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Hidden equivalence in the collective emission from a dilute atomic cloud
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We investigate the collective spontaneous emission from an ensemble of two-level atoms evenly distributed
inside a sphere with a low density. An initial symmetric single-excitation state is considered and polarizations for
all atoms are assumed to be aligned in the same direction. We find that the superradiant decay rate of the ensemble
exhibits oscillatory features dependent on the radius of the sphere and the atomic radiation wavelength, indicating
that the collective emission rate can be less than the single-atom decay rate for certain parameters. Moreover, the
system exhibits a hidden equivalence where the collective emission from the ensemble gives the same radiation
rate as the case of a two-atom model where one atom is at the center of the sphere and the other effective
large atom, composed of all other atoms, is localized at the edge of the sphere along the polarization direction.
Our result hence provides a potential method towards exploring complex many-body physics by simplifying the
model into a two-body problem.
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I. INTRODUCTION

The collective emission from an atomic ensemble is of
great importance in atomic physics and quantum optics [1]. It
has been shown that a cloud of identical atoms is synchronized
to emit coherently. In particular, for a collection of N atoms
with the size of the ensemble being much smaller than the
atomic radiation wavelength λ, the collective emission rate
from the symmetric single-excitation Dicke state is N times
larger than a single-atom spontaneous emission rate �11 [1].
Due to the difficulty in preparing small atomic ensembles with
a high density, experimental studies of superradiance have
been done with large-size ensembles [2,3], where it is as-
sumed that Dicke states can be found in the course of temporal
evolution of a fully excited system [3–5]. Moreover, Dicke
states can also be generated using projective measurements
with low success probabilities [6–8].

Single-photon collective spontaneous emission has drawn
enormous interest in the past because of its potential applica-
tions in quantum information processing such as producing
coherent emission without coherent pumping [1], realizing
single-photon sources [9,10], and generating quantum states
for quantum memory and quantum networking [11,12]. The
modification of the spontaneous emission of one atom in the
presence of the other N − 1 atoms in a cavity has been investi-
gated in Refs. [13–16]. The dynamics of the system composed
of N two-level atoms with one atom excited initially in free
space has been studied, which exhibits a radiation suppression
phenomenon [17]. In the past decade, the timed Dicke state
[18–28] where the ensemble is excited by a single photon has
been intensively explored. The decay rate of such a state is ap-
proximately proportional to N�11λ2/R2 [19–21,27], where R
is the radius of the sample. Potential applications of the single-
photon superradiant state include quantum metrology [24],

*Corresponding author: yuanluqi@sjtu.edu.cn

quantum simulation of topological physics [26], and quantum
control of spontaneous emission and ultrafast readout [27].
Related but different from the above works, in Ref. [29] the
behavior of the collective spontaneous emission rate in the
vector model was explored in the case of weak excitation.
Nevertheless, the polarization effect in the collective emission
due to the vector nature of the electromagnetic field has not
been explored in great detail for the large-size single-photon
excited atomic ensemble.

In this paper we investigate the collective spontaneous
emission from an equally distributed spherical cloud of N
atoms, where an initial symmetric single-excitation Dicke
state is considered. Taking into account the effect of polariza-
tion, we study the superradiant decay rate of such an ensemble
with a low density and find that the collective emission rate
also depends on the atomic number N , the radius in the
unit of wavelength R/λ, and the single-atom spontaneous
emission rate �11. However, the collective emission rate ex-
hibits an oscillatory behavior on R in a period of λ. Such
an oscillatory feature makes it possible for the superradiant
decay rate for the atomic ensemble to become less than the
single-atom decay rate, which corresponds to the suppression
of the emission. We also find a hidden equivalence for the
modulations of the one-atom spontaneous emission rate, i.e.,
our model is mathematically equal to the case that one atom
sits at the center and all other atoms are localized at the edge
of the sphere, forming an effective large atom. The many-
body problem is thus transformed into an effective two-body
problem.

II. THEORETICAL ANALYSIS

We start with a model composed of N two-level atoms
coupled to a radiation field. The Hamiltonian that de-
scribes the atoms and radiation field can be written as
H0 = ∑N

l ω0σ
+
l σ−

l + ∑
kλ ωkλa†

kλ
akλ. Here ω0 is the atomic

transition frequency, σ+
l = |el〉〈gl | and σ−

l = |gl〉〈el | are the
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raising and lowering operators of the lth atom, respectively,
and a†

kλ and akλ are, respectively, the creation and annihi-
lation operators for a photon with the momentum k, the
frequency ωk, and the polarization λ. The atom-field inter-
action is described by HI = −∑N

l=1(μlσ+
l + μl∗σ−

l ) · E(rl )
under the dipole approximation, where μl is the electric
dipole transition matrix element and E(rl ) denotes the ra-
diation field operator at the position rl for the lth atom.
The Hamiltonian can be rewritten in the interaction pic-
ture as HI (t ) = −∑N

l=1(μlσ+
l eiω0t + μl∗σ−

l e−iω0t ) · E(rl , t ),
where E(rl , t ) = eiH0t E(rl )e−iH0t . We decompose the electric-
field operator into positive- and negative-frequency compo-
nents E(rl , t ) = E+(rl , t ) + E−(rl , t ), where E+(rl , t )|0〉 =
0 and 〈0|E−(rl , t ) = 0 [30]. By applying the rotating-wave
approximation, we obtain

HI (t ) = −
N∑

l=1

[
μl

iE
+
i (rl , t )σ+

l eiω0t + μl∗
i E−

i (rl , t )σ−
l e−iω0t

]
.

(1)
Here the Einstein summation convention is applied to the
polarization i, where the index i is x, y, and z in the Cartesian
coordinate system.

We consider an equally distributed N-atom spherical en-
semble and assume that initially there is one atom ex-
cited and the field is under the vacuum state, which corre-
sponds to a symmetric single-excitation Dicke state: |ϕ(0)〉 =

1√
N

∑N
l=1 |g1g2 · · · el · · · gN 〉|0〉. At the time t , the state vector

becomes [31,32]

|ϕ(t )〉 =
N∑

l=1

bl (t )|g1g2 · · · el · · · gN 〉|0〉

+
∑
kλ

dkλ(t )|g1g2 · · · gN 〉|1kλ〉, (2)

where bl (0) = 1/
√

N and |1kλ〉 denotes a photon in the mode
(k, λ). Here we restrict our analysis to the single-photon limit.

The dynamical evolution of the state vector is determined
by Schrödinger’s equation. In the weak-interaction limit, one
can apply the Markovian approximation [33] and derive the
evolution equation for the state probability amplitudes in
Eq. (2) as

ḃl (t ) = −
N∑

m=1

Llmbm(t ), (3)

where Llm = μl
iμ

m∗
j

∫ ∞
0 du eiω0uGlm

i j (u), u = t − t ′, and
Glm

i j (u) = 〈0|E+
i (rl , t )E−

j (rm, t ′)|0〉 is the field correlation
function. Here Llm can be rewritten as

Llm = 1
2μl

iμ
m∗
j G lm

i j (ω0) + iμl
iμ

m∗
j Klm

i j (ω0), (4)

with

G lm
i j (ω0) =

∫ ∞

−∞
du eiω0uGlm

i j (u),

Klm
i j (ω0) = − P

2π

∫ ∞

−∞

G lm
i j (ω)

ω − ω0
dω.

(5)

Here μl
iμ

l∗
j G ll

i j (ω0) ≡ �ll is the spontaneous emission rate for
the lth atom [34]; μl

iμ
m∗
j G lm

i j (ω0) ≡ �lm, with l 	= m, defines
the modulation of the spontaneous emission rate of the lth
atom due to the presence of the mth atom [35]; μl

iμ
l∗
j Kll

i j (ω0)
gives the energy shift of the lth atom; μl

iμ
m∗
j Klm

i j (ω0) ≡ V lm,
with l 	= m, defines the dipole-dipole interaction potential
between the lth and the mth atoms; and P denotes the Cauchy
principal value.

With a large ensemble, we assume that the evolution dy-
namics of each atom is approximately the same, i.e., bm(t ) =
bl (t ) ≡ b(t ). This assumption is true when the size of the
sphere goes to infinity. For a dilute large atomic cloud, we can
still take this approximation: For atoms away from the
boundary of the sphere, there is almost no difference in the
atom-field interaction between the atoms, so the excitation
probability is nearly the same; for atoms near the boundary
of the sphere, their contribution is negligible for a large
ensemble. Under this assumption, we have

b(t ) = 1√
N

exp

[
−

N∑
m=1

(
1

2
�1m + iV 1m

)
t

]
, (6)

where we set the first atom as the atom at the center of the
spherical atomic cloud. We clarify here that the first atom is
not necessarily the atom at the center, but can be any atom
near the center of the sphere due to the similarity of the atom’s
excitations under our approximation.

We use the solution in Eq. (6) to investigate the col-
lective decay rate of the atomic ensembles. The transition
probability for an atomic system from the initial state ρ(0)
to the final state ρ f can be expressed as P(t ) = Tr[ρ f ρ(t )]
[36]. Here the time-dependent reduced density matrix ρ(t ) =
Trf [|ϕ(t )〉〈ϕ(t )|] is obtained by tracing the density matrix of
the coupled system over the field degrees of freedom. The
final state ρ f is the density matrix of the atomic ground state.
As a result, one obtains P(t ) = 1 − N |b(t )|2. The collective
emission rate � is defined as the transition probability per unit
time at t = 0 [36]:

� = ∂t P(t )|t=0 = �11 + �M . (7)

Here we take the transition matrix element μm to be real, for
simplicity. Equation (7) shows that the superradiant decay rate
of the atomic ensemble is a summation between the sponta-
neous emission rate from one atom �11 and the corresponding
modulations on the same atom due to the presence of other
atoms

�M =
N∑

m=2

�1m. (8)

Our next step is to calculate the modulations �M to explore
the collective decay rate �. We assume here that the polariza-
tions of all atoms have the same directions and are aligned
along the z axis as shown in Fig. 1(a). To calculate �M in
Eq. (8), we can write �lm = �lm

‖ + �lm
⊥ for the two arbitrary

separated lth and mth atoms. Here �lm
‖ (�lm

⊥ ) is defined as
the contribution due to the polarizations of atoms projected
in (perpendicular to) the direction parallel to the line joining
two atoms, with the corresponding transition matrix element
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FIG. 1. (a) Equally distributed spherical cloud of atoms where their electric dipoles have the same magnitudes and orientations. (b) The
spherical coordinate describes the relativity positions between the mth atom and the first atom located at the center of the sphere. The z axis
is along the polarization direction. (c) Schematic illustration of an equivalent two-atom model in which one atom is at the center and another
effective large atom with the dipole (N − 1)μ is set at the edge of the sphere.

component μ
l/m
‖ (μl/m

⊥ ). Further, �lm
‖ and �lm

⊥ are obtained
as [37]

�lm
‖ = μl

‖μ
m∗
‖ ω3

0

πε0c3

sin η − η cos η

η3
, (9)

�lm
⊥ = μl

⊥μm∗
⊥ ω3

0

πε0c3

(η2 − 1) sin η + η cos η

2η3
, (10)

where η ≡ rω0/c is the phase difference between the ra-
diation emitted by these two atoms and r is the separa-
tion distance between them. We further assume that elec-
tric dipoles of atoms have the same magnitudes |μm| = μ,
which gives μ1

‖μ
m∗
‖ = μ2 cos2 θ , where μ1

⊥μm∗
⊥ = μ2 sin2 θ

and θ is the polar angle of the mth atom [see Fig. 1(b)].
Under the condition N � 1, �M defined in Eq. (8) becomes
N−1

V

∫ R
0 r2dr

∫ 2π

0 dϕ
∫ π

0 sin(θ ) �1mdθ , where V is the volume
of the sphere. This leads to

�M = 3(N − 1)�11 sin(ξ ) − ξ cos ξ

ξ 3
, (11)

where �11 = μ2ω3
0/3πε0c3 is the spontaneous decay rate of

the atom and ξ ≡ Rω0/c = 2πR/λ is the phase difference
between the radiation emitted by the atom at the center and
the ones at the edge. One can see that the collective emission
rate of such a spherical atomic cloud depends on the particle
number N , the phase difference ξ , and the decay rate of a
single atom �11.

One can find the similarity between Eqs. (9) and (11). From
Eq. (9), if one sets the first atom at the center and N − 1 atoms
on the +z axis at the edge of the sphere with their polarizations
remaining along the z axis, as illustrated in Fig. 1(c), the
modulations of decay rate of the first atom will be same as the
case described by Eq. (11) in Fig. 1(a). Therefore, our system
exhibits a hidden equivalence to the effective two-atom model
in Fig. 1(c) with the electric dipole transition matrix element
of the atom at the center being μ and that of another effective
large atom being (N − 1)μ.

To see the properties of the collective decay rate in Eq. (7),
we plot the function f (ξ ) ≡ 3[sin(ξ ) − ξ cos ξ ]/ξ 3 from the
modulations �M in Eq. (11) as a function of the phase
difference ξ in Fig. 2. One can see an oscillatory behavior
dependent on the radius R. The period of the oscillation is
equal to the resonant radiation wavelength λ, indicating the

radius-dependent resonant feature of the sphere. Here f (ξ ) >

0 corresponds to the enhanced collective decay rate of the
atomic ensemble compared to the decay rate of a single atom,
which exhibits a superradiant feature of the ensemble. As for
f (ξ ) < 0, it gives a decreased collective decay rate, which
corresponds to the suppression of the emission. Therefore,
with the radius of the sphere increases, one sees the transition
between enhanced collective emission and the suppressed
emission.

Figure 2 shows that the minimal value of f (ξ ) can be
reached near the neighbor of ξ = 2kπ , i.e., R = kλ, where
k � 1 is an integer. At each minimum, the decay rate of
the ensemble should be physically larger than zero. This
gives a constraint on the system 1  N � 4k2π2/3, which
can be written in another form 3/4πk3  nλ3 � π/k. Here
n = N/V is the atomic density. This constraint indicates that
the average separation between atoms is comparable to or
larger than the resonant radiation wavelength λ. Thus the
atomic cloud must be dilute. In our model, the atoms are
distinguishable. When the distance between atoms is too
small, the current model is no longer valid. On the other hand,
the constraint also provides a restriction on the atomic density
by the radius in the unit of wavelength in our model.

In Fig. 3 we plot the collective decay rate versus the phase
difference ξ and the atomic density n. From Fig. 3(a) one
sees that the periodicity is only dependent on ξ . With a larger
n, the contrast between the maximum and minimum values
of � increases. To better study this plot, we consider two
cases. (i) The number of atoms is constant, i.e., N = 1000.

FIG. 2. Plot of f (ξ ) ≡ 3(sin ξ − ξ cos ξ )/ξ 3 as a function of the
phase difference ξ .
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FIG. 3. (a) Collective spontaneous emission rate �/�11 as a
function of the phase difference ξ and the atomic density n. The
black line denotes the constant atomic density n = 3/4πλ3 and the
red dashed line the constant atomic number N = 1000. (b) Collective
decay rate as a function of the phase difference ξ for constant atomic
density n = 3/4πλ3 (black solid line) and constant number of atoms
N = 1000 (red dashed line).

The radius of the atomic cloud is taken in the range R � 10λ

to make it satisfy the constraint. (ii) The atomic density is
constant, for instance, n = 3/4πλ3. With this atomic density,
for a radius R = 10λ, there are 1000 atoms in the sphere.
As a comparison, we plot the evolution of the superradiant
decay rate versus ξ for both cases in Fig. 3(b). The collective
emission rate exhibits an oscillatory feature on the radius R
with a period λ. With the increase of radius, the amplitude
of the collective decay rate decreases successively for case (i),
but increases gradually for case (ii). For case (i), the density of
the atomic ensemble decreases when one increases the radius
of the sphere and keeps the number of atoms constant, which
causes the decrease of �. However, for case (ii), as one fixes
the density of the atomic cloud and a bigger ξ gives a larger N ,
which results in an increase of �. Moreover, in case (ii), the
radius R should not be greater than 13λ to meet the constraint
for atomic density which is restricted by the radius in the unit

of wavelength. Figure 3 characterizes the general properties
of the superradiant emission rate versus the phase difference
ξ for constant particle number and constant atomic density.

For an ensemble of identical atoms, the dipole orientations
are usually chaotic and randomly distributed. When one ap-
plies an external resonant field to the ensemble, the transition
dipole moment of each particle will be the same and the initial
Dicke state can be found in the evolution of the excited system
[3–5]. Therefore, our model is feasible in the experiment.

III. CONCLUSION

In summary, we have explored the collective emission from
a dilute atomic cloud and found a hidden equivalence. A
spherical ensemble of two-level atoms, which is prepared ini-
tially as a symmetric single-excitation state, has been studied.
The polarizations for all atoms are considered to be aligned in
the same direction. The vector nature of the electromagnetic
field has been explored in great detail in our model. The results
exhibit an oscillatory feature for the collective decay rate. We
noticed that our model has a result equivalent to the emission
from an effective two-atom model. Our work therefore points
to a simplified route to explore complicated physics problems
in N-atom collective coherent emission, which is important
in the field of quantum information processing, and also holds
promise for a better understanding of related applications such
as coherence-enhanced sky lasing [38,39], superradiance in
ionized gas [40,41], and quantum amplification by collective
emission [42–44] in the future.
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